

Multiple smaller base stations are greener than a single powerful one: Densification of Wireless Cellular Networks

Agrim Gupta, Ish Jain and Dinesh Bharadia

https://wcsng.ucsd.edu/sustainability

LTE: One of humanity's biggest achievements of 2010's?

- Always connected to a far-away located base-station
- Plethora of new applications over the past decade: rideshare, video streaming/calls, can't imagine life w/o LTE

However, this has come at a huge cost to environment

- Carbon footprint of Telecom: 1.6%, comparable to aviation industry [1]
- Telecom Industry under heavy scrutiny to reduce the footprint [2]
- 4G base stations consume about 1 kW power, with 5G this is going to rise to 4 kW [3]

[1]: "The Wireless Communications Industry and its Carbon Footprint", AZO CleanTech

[2]: "AT&T Commits to be Carbon Neutral by 2035": About AT&T

[3]: "Energy-efficient 5G for a greener future", nature electronics

UC San Diego JACOBS SCHOOL OF ENGINEERIN Electrical and Computer Engineering

Why telecom carbon footprint comparable to aviation?

Both these industries face the curse of distance

Communicating to far away BS is power consuming

- Communication happens via EM waves, die out due to high distance
- BS transmit at very high power to get the required range
- Effort towards making power amplifiers spit high enough power levels

BS designed to maximize range by transmitting high power

Existing deployments, small cells increase capacity

Existing deployments have used smaller base stations as side characters to just address capacity

We propose uniform dense deployment for green future

Small base stations become main characters! Less wireless air travel time -> Tons of power saved

Talk Roadmap

- 1. Modelling the curse of distance in wireless transmission
- 2. How uniformly dense deployment breaks the curse of distance
- 3. LTE case-study, how much to densify?
- 4. Deployment and Management challenges

How signals attenuate with distance?

- Mobile device requires signals at level P_R
- Path loss (PL) \propto (1/R²) over air
- Base station transmits at P_R*(KR²)
- Statistically PL \propto (1/R^{γ}) urban setting, γ >2
- $\gamma \sim 2.5-3.5$, BTS transmits at $P_R^*(KR^3)$

How densification defeats the curse of distance?

- Single Red BS (existing)
- Red BS transmits P_R*(KR³)
- Total power P_R*(KR³)

- 4 green BS (proposed)
- Each Green BS transmit $P_R^*(K(R/2)^3) = P_R^*(KR^3)/8$
- Total 4 Green BS power: 4*P_R*(KR³)/8 = P_R*(KR³)/2

All 4 Green BS combined consume ¹/₂ the power of red BS!

Generalization to n-levels of densification

- Splitting radius to R/n -> Requires n² BS
- n^2 Green BS transmit $P_R^*(K(R/n)^3) = P_R^*(KR^3)/n^3$
- Total n² Green BS, net power: n² *P_R*(KR³)/n³
- n² Green BS consume net **1/n** power of single Red BS
- Splitting to R/1000 => 1000 times power savings?

How much to densify? The green pt. of densification

Curse of numbers -> Multiplicative increase in power

Upcoming innovations can shift the green point further

(1) Reduce fixed cost: Design efficient PAs + Optimize RF/BB power

(2) On-demand flexible reduction of 'n': Softwarized cloud management

Who will setup these 100's of base-stations?

Deployment challenges: incentivising communities to set up BS

Microwave Tower High Quality Steel

Tube 3 Leg Tubular Lattice Microwave

\$7,800.00-\$8,000.00/ ==

1 set (M00)

Microwave Tower Microwave Tower Triangular Microwave Transmission

\$1,180.00-\$1,200.00/ton

Tower Microwave 50m And 60m Hot-dip Galvanized Steel Lattice Tubular

\$1,080.00-\$1,180.00/ ten 1.010n (MOD)

Who will orchestrate this big network of base-stations?

Not just the base-stations, but a network of base-stations

- Sustainable backhaul: use existing laid telecom cables instead of specialized fibre networks
- Interoperability: designing low-power micro base-stations compatible with O-RAN stackup
- Hardware Reuse: Use 3G/upgraded WiFi APs as smaller BS+ old CPUs/Smartphones for compute

Conclusion: Densified base-station deployment can lead to a greener and scalable future of wireless networks

- Reduced net "air-time" of wireless transmission => **power savings**
- Curse of distance vs Curse of numbers tradeoff => densification green point
- Deployment and Management challenge of uniformly dense networks => incentivisation

