A Realistic Radar Simulator for End-to-End Autonomous Driving in CARLA
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Abstract—The advancement of self-driving technology is driven
by the need for robust perception and navigation systems. Simula-
tors for autonomous driving facilitate the rapid development and
testing of navigation algorithms; however, a key issue for most is
their inaccurate modeling of the radar sensor. This is a significant
drawback as radars offer robust sensing capabilities in adverse
weather conditions and occlusions. CARLA, a widely adopted
open-source simulator, provides a simplistic radar model that fails
to capture the complex physical and material-dependent behavior
of real-world radar. To address these limitations, we present C-
Shenron, a radar simulation framework integrated into CARLA,
which generates realistic radar measurements by fusing LiDAR
and camera data. C-Shenron also supports configurable radar
parameters, multiple sensor placements, and scalable dataset
generation. Our evaluations demonstrate that radar-camera fu-
sion models, trained with C-Shenron’s generated data, achieve
performance equivalent to traditional LiDAR-camera baselines
on key metrics from the CARLA leaderboard.

Index Terms—Radar Simulation, Carla Simulator, End-to-End
Driving Models, Multimodal Perception

I. INTRODUCTION

Autonomous systems, especially self-driving cars, rely on
End-to-End (E2E) systems that seamlessly connect perception
to downstream tasks, such as path planning and navigation.
These systems take raw sensor inputs and directly output
control actions, making the quality of perception a crucial
determinant of overall performance. Robust perception is es-
pecially important in complex driving environments, where the
ability to accurately detect and track objects directly impacts
safety and reliability [1], [2]. While LiDAR and camera sensors
have been widely used for perception, their performance can be
significantly degraded by adverse weather conditions and occlu-
sions due to the wavelengths they operate in. In contrast, radar
sensors, operating with millimeter-wave (mmWave) signals, are
highly resilient to adverse weather and lighting conditions, as
highlighted in [3].

Additionally, developing and testing E2E autonomous driv-
ing systems in the real world is both costly and time-intensive,
as even small changes in perception models require collecting
and labeling miles of new driving data. This makes iterative
development difficult to scale. Moreover, it is challenging to
test E2E driving models in real-world settings. Simulators
address this bottleneck by offering a controllable and repeat-
able environment for training and evaluation. The CARLA
simulator [4] is a widely adopted open-source platform that

“Equal contribution.

j1i793Qucr.edu,
dinesb}@ucsd.edu

Camera

&

-10 -5 o o 10

Figure 1. Top image is the camera view from inside the car, bottom plots are
the radar point clouds from CARLA and shenron radar, respectively, and both
in bird-eye perspective.

facilitates large-scale data collection across diverse handcrafted
scenarios, including varying weather and complex traffic con-
ditions. Researchers have extensively utilized CARLA to train
and evaluate E2E models as noted in [S5]-[7].

However, a significant limitation of CARLA pertains to the
modeling of radar sensor returns. Unlike camera or LiDAR, ac-
curately simulating radar is particularly challenging due to the
complex physical interactions of millimeter-waves with various
materials. CARLA’s current radar model simplifies this intricate
process, often relying on basic ray-casting methods that fail to
account for essential real-world phenomena such as material
properties, surface geometry, and signal-level interactions like
scattering and reflection. This renders any research involving
CARLA radar inadequate, as it does not reflect the real-world
capabilities of an operational radar sensor.

In this paper, we present C-Shenron, an innovative radar
sensor model integrated into the CARLA simulator. We build
on top of the Shenron [8] framework, which fuses LiDAR and
Camera measurements via millimeter-wave surface scattering
models (refer to Section III-B for more details). The Shenron
framework, originally developed and validated with real-world
data, is thus brought to CARLA, significantly enhancing the
realism of the simulated radar output. A comparison between
CARLA'’s native radar and our enhanced radar is shown in
Figure 1. C-Shenron supports a wide range of configurable
radar parameters such as number of antenna arrays, chirp
time, chirp bandwidth, and experiment with various sensor
placements, to explore multiple fusion strategies. This enables



a comprehensive multi-modal data collection framework to
generate realistic datasets for training and testing of perception
models. The contributions of our paper are summarized as
follows:

1) Radar Simulator Integration: We integrate a realistic
radar simulation framework in CARLA, which extends
its capabilities by generating physically accurate and
material-aware radar data. The nature of the simulator
allows the sensor parameters to be configurable, enabling
diversity in sensor data generation.

2) Pipelines for data collection: We develop efficient
pipelines for large-scale data collection and training of
deep learning models using the simulated radar data. We
have released our codebase, dataset collected and some
driving videos here!.

3) Benchmarking with E2E Driving models: We validate
the utility of our simulated radar data by integrating
it into a state-of-the-art E2E driving model [5]. Our
results show that models trained with C-Shenron achieve
comparable performance across key CARLA leaderboard
metrics, including Driving Score, Route Completion, and
Infraction Penalty.

Figure 2 shows a snapshot of the simulated radar, LiDAR

and camera data. Camera view is from the driver’s perspective,
and both LiDAR and radar are in bird-eye view.

II. RELATED WORK
A. Radar Simulators

There have been multiple radar sensor simulators. For single-
channel radars, [9] utilized radar range equations combined
with a visibility-based approach to model received radar power.
But this method does not capture realistic radar scattering
effects or extended target behaviors. This paper [10] proposed
a method employing the Torrance-Sparrow reflection model,
primarily addressing specular reflections from rough surfaces;
however, this method similarly neglected comprehensive radar
scattering and lacked validation against real-world data.

For MIMO radar simulations, [11] developed a realistic ray-
tracing approach, yet its reliance on manually created meshes
limits the method’s scalability and the ease of integration with
existing LiDAR-based datasets. Furthermore, this paper [12]
explored GAN-based LiDAR-to-radar translation approaches,
but these mainly focus on visual translation rather than phys-
ically accurate radar signal simulation. These works highlight
a significant gap in the accuracy of radar simulations. In
contrast, Shenron [8] performs a much better job at holistically
simulating radar data.

B. Real World Radar Datasets

Several large-scale datasets offer diverse radar setups and
scenarios to advance radar-based autonomous driving research.
nuScenes [13], a widely used benchmark, provides synchro-
nized Camera, LiDAR, and Radar data across diverse urban
environments. The Oxford Radar RobotCar Dataset [14] also

ILink to website: https://wcsng.ucsd.edu/c-shenron/
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Figure 2. Comparison of views from camera, semantic LiDAR, and shenron
radar in CARLA. The lines outline the road, red and magenta highlights
vehicles, and indicates a static object.

offers real-world radar data, specifically targeting challenging
weather and lighting conditions. Similarly, the CRUW dataset
from RODNet [15] presents synchronized Radar and Camera
data collected under varied driving scenarios. Additionally, K-
Radar [16] introduces a high-resolution 4D radar benchmark,
highlighting radar’s robustness compared to LiDAR in adverse
weather conditions. But one key problem with these datasets is
the inability to perform E2E simulations for testing AD models,
hence the need for simulators with realistic radar sensor data.

C. Radar Based Perception

Recent works have focused on enhancing radar-based per-
ception through innovative learning strategies, such as [1]
introduced bootstrapping techniques aimed at improving radar
performance without the need for extensive manual annotations.
This paper [17] further addresses radar’s inherent resolution and
noise challenges through an adaptive-directional transformer
for real-time, multi-view semantic segmentation. Additionally,
SIRA [2] contributes scalable inter-frame relation and associa-
tion methodologies, effectively capturing temporal dynamics to
enhance radar-based object detection and tracking. Collectively,
these methodologies demonstrate radar’s potential as a robust
sensor for autonomous driving.

Although multimodal perception leveraging Radar, LiDAR,
and Camera sensors has been extensively explored, prominent
benchmarks such as the KITTI Vision Suite [18] primarily
emphasize Camera and LiDAR-based evaluations, with limited
focus on radar-specific assessments. In contrast, our research
introduces a realistic radar sensor model integrated into the
CARLA simulator, establishes a bridge between radar simula-
tion and real-world applications to facilitate direct evaluation
of radar-based end-to-end autonomous driving.

III. DESIGN

The C-Shenron framework, a new, scalable, and highly
accurate radar simulator integrated into CARLA. In this section,
we describe the radar simulator provided by CARLA, Shenron
architecture, and the key computational innovations that make
our approach unique.



A. Shortcomings of CARLA Radar model

CARLA is a simulation tool based on Unreal Engine [19],
which focuses primarily on generating photorealistic images
from cameras. As camera-based simulation is the core focus
of CARLA, the radar sensor model it provides is relatively
simplistic and lacks physical realism. The radar point cloud
is generated simply by the ray-casting methodology, where a
user specifies the horizontal and vertical field of view and the
number of expected points N. A set of N random ray directions
is sampled within the specified field of view, and a ray is cast in
each direction. All the points where the rays hit the environment
are returned as the final point cloud. This process does not take
into account any noise, signal processing, or material properties
of the surfaces, hence creating an unrealistic radar point cloud.
You can find references here?.

B. Shenron Primer

Shenron [8] framework simulates a high-fidelity MIMO
radar using LiDAR point clouds and camera images. Here,
the LiDAR point cloud is used as an impulse response of the
environment, representing a real-world ray tracing operation,
creating a high-quality representation of the scene without the
need for modeling complex geometries. To capture accurate
Radio Frequency (RF) reflection profiles for various materials,
the framework uses semantic information from the camera
images. This allows for material-aware reflectivity modeling,
where different surfaces interact with radar waves in a physi-
cally consistent manner. This architecture was built and tested
in real-world scenarios and showed excellent correlation with
actual radar data. As Shenron uses LiDAR and camera as the
basis of radar simulation, it makes it a perfect candidate for
replacing the existing radar sensor model in CARLA.

C. C-Shenron: CARLA Shenron Integration

CARLA operates on a client-server architecture, where the
server simulates the virtual world and the client application
interacts with this simulated environment. The server handles
the physics simulation, and the collected raw sensor data
(camera and LiDAR), along with metadata such as sensor type,
frame number, and timestamp, is serialized and transmitted to
the client application. The client receives sensor data, processes
it, and sends control commands back to the server.

Figure 3 shows the overall picture of the Shenron integration.
We devise a hybrid approach by implementing a custom sensor
on the server side, which captures the LiDAR Point Cloud
(PCD), semantic tags, and relative velocity information for
each point in the PCD, along with other metadata, which is
further transmitted to the client side. This approach aligns
with CARLA’s native C++ architecture, ensuring efficient
communication and integration with the core simulation loop.
The Shenron simulator is run on the client side to generate
the simulated radar data. To mitigate the real-time latency
introduced by the radar data processing, we paused the CARLA

2GitHub issue: https://github.com/carla-simulator/carla/issues/4974, Docu-
mentation: https://carla.readthedocs.io/en/latest/ref_sensors/#radar-sensor
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Figure 3. Overall architecture of C-Shenron. We highlight the client-server
architecture of the simulator and the necessary data that gets recorded and
passed on to the client for the Shenron simulator.
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simulation to ensure that the overall simulation time remains
unaffected.

A brief early demonstration of this work was presented as a
demo abstract at ACM SenSys’25 [20]. In this paper, we pro-
vide a full technical exposition including architectural details,
simulation methodology, and extensive evaluation results.

IV. EVALUATION SETUP

To validate the impact of the C-Shenron Radar simulator for
AD tasks, we collect a large-scale dataset with various driving
scenarios, integrate a state-of-the-art E2E driving model based
on the Transfuser++ [5] architecture, train and evaluate this
E2E driving model on multiple driving routes and scenarios.

A. Data Collection

We conducted large-scale data collection using the CARLA
Garage platform [21], which uses a rule-based driving ex-
pert [22], just like an experienced human driver, thus producing
high-quality driving data. This expert follows predefined traffic
rules, accesses map data (e.g., lane boundaries, signals, speed
limits), and plans routes with high precision.

Our dataset includes a variety of environments, weather
conditions, and sensor configurations to create a comprehensive
evaluation benchmark. We collect data across 8 CARLA towns
(TownO1 - TownO7 and Town10) under multiple driving scenar-
10s such as urban cities with dense streets, residential areas with
suburban roads, and open highway settings. Also, we include
multiple weather types, such as rainy, foggy, and nighttime
conditions. To accelerate data collection, multiple CARLA
instances are launched in parallel, using a Kubernetes cluster
to launch multiple jobs, which reduces the collection time
from days to hours. This results in 70 unique combinations,
with each combination repeated three times, yielding a total of
850,000 frames. The code and dataset are present in the GitHub
repository mentioned in the introduction section.

B. Integrating with Transfuser++ Architecture

The Transfuser++ [5] architecture is an imitation driving
model that uses a robust transformer-based sensor fusion mod-
ule integrating camera and LiDAR data, alongside auxiliary
branches for perception tasks like classification, detection, and
segmentation. The model is trained to predict the steering angle
and acceleration required for the car to drive safely based on the
Camera and LiDAR inputs. For more details on the architecture,
refer to the paper [5].
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Figure 4. C-Shenron with the Transfuser++ Architecture

In our implementation, radar data is generated as range-angle
plots and fed directly as images into the BEV branch, bypassing
the LiDAR images. This is depicted in Figure 4.

C. Training details

The data generated from the expert driver (Section IV-A)
contains LiDAR, radar, camera, acceleration, and steering data,
which is directly used to train the model. Training includes the
same loss function as in [5], along with other parameters such
as batch size of 12, 30 epochs, and a learning rate of 3x10%.
We trained the model on a system equipped with 6 NVIDIA
A10 GPUs, which required approximately 2 days to complete
on the entire 855,000 frames of data.

D. Evaluation Metrics

The driving proficiency of an autonomous agent is evaluated
through various metrics in CARLA?®, providing insights into
different aspects of its driving behavior. For our setup, the
metrics used are described as follows:

o Route completion: It is the percentage of the route
distance completed by an agent. The higher the percentage,
the better it is at driving through a given scenario. For a
given Route i, it is denoted as C;.

o Infraction Penalty: CARLA tracks multiple types of in-
fractions, and each infraction has a penalty score between
0 and 1 depending on the severity of the infraction.
Furthermore, these scores are consolidated into a single
score through a geometric series, based on the number
of infractions and the type of infractions committed by
the agent. If for the Route i, n; and p; are the number
of infractions and infraction score for the j infraction
committed by the agent, then the infraction penalty is

calculated as:
n
P = HP jl
J

o Driving Score: This is the overall score for the agent,
calculated per route and averaged across all routes. For n
routes, the driving score is calculated as:

n

1
~).GP

i=1

DS =

Infractions within the CARLA simulation environment are
penalized based on their severity, with specific coefficients
assigned to various types of infractions. For instance, collisions
with: pedestrians (0.50), other vehicles (0.60), static objects

3More information can be found here: https://leaderboard.carla.org/

(0.65), traffic violations such as running a red light (0.70),
running a stop sign (0.80), and many more.

V. RESULTS

The driving models are evaluated on the routes from
NEAT [6], which include various settings like highways, urban
areas, and residential zones with diverse road layouts and
obstacles to simulate realistic conditions. Agents face traffic
scenarios based on NHTSA typology*, such as navigating
intersections, responding to pedestrians, cyclists, and other road
users. To ensure consistency, each model was tested on the
same set of 14 routes over 5 iterations under stable conditions
without extreme weather. Additionally, we carried out three
case studies to examine the impact of each radar view, different
sensor placements, and radar resolution on E2E driving tasks.
Note that in all the evaluations, camera data was always fed
into the model.

A. Does increasing radar views help?

Here, we analyze the effects of increasing the number of
radar views on our autonomous vehicle. The Shenron radar
generated from combining Camera and LiDAR offers a 180°
field of view (FOV), but the image quality decreases as the
coverage angle widens. We evaluate three configurations of our
radar models: front-only radar, front + back radars (denoted
as FB), and full coverage with front + back + left + right
radars (denoted as FBLR). All configurations are also fused
with camera features. Note that all the views of radar have
180° FOV.

Combining the radar views in the FB scenario is straightfor-
ward; the two can simply be concatenated vertically to create a
complete 360° image, as illustrated in Figure 5a. However, an
interesting challenge arises when attempting to merge the four
radar views into a single high-quality image.

(a) FB concat

(b) Mask for FBLR
Figure 5. Images representing: (a) Radar image after FB concatenation, (b)
Mask for FBLR concatenation, (c) Radar image after FBLR concatenation.

(c) FBLR concat

We devise a masking approach wherein the overlapping
border regions from different views are used to average the
inconsistency and create a cohesive view of all four radars. The
specialized mask, as shown in Figure 5b, is rotated for proper
orientation, applied to each radar view, and further combined
through pixel-wise addition. The mask’s magnitude decreases
linearly before the £45° line and drops to 0 beyond the line,
which compensates for brightness variation in the overlapping
regions when performing pixel-wise addition. The resulting

“https://www.nhtsa.gov/sites/nhtsa.gov/files/811731.pdf



composite radar image, Figure 5c, demonstrates the efficacy
of this approach and creates an accurate representation of the
vehicle’s surroundings.

The findings are presented in Table I. LiDAR serves as
the baseline for comparison, being the original version of
Transfuser++ retrained on the collected LiDAR and Camera
data using the same parameters. The expert model represents
statistics from CARLA’s driver agent, which sets a theoretical
upper-performance limit, as the training data was derived from
this agent.

Radar View RC T IS T DS T
LiDAR [5] | 9593 £ 343 0.9 £ 005 76.84 £ 5.26
Front 9512 £ 3.02 082 £ 006 78.14 £ 3.7
FB 96.51 £ 299 0.79 £ 0.02 7826 £ 2.96
FBLR 93.56 £2.75 0.84 £ 0.05 79.24 + 1.85
Expert 97.394 0.964 93.82

Table T
RESULTS FOR DIFFERENT RADAR VIEWS WITH ROUTE COMPLETION (RC),
INFRACTION SCORE (IS), AND DRIVING SCORE (DS).

Among the radar models, the FBLR configuration demon-
strates the best performance in driving score and infraction
score. It also has the lowest variance in driving score, indicating
that additional field-of-views enhance consistency and improves
situational awareness of the model. Although none of the mod-
els achieve expert performance, the FBLR radar configuration
is the closest across all metrics. Overall, radar-based models
showcase equivalent performance compared to LiDAR-camera
setups in all key areas, demonstrating the viability of the
simulated data.

B. Redaction of Radar views

To evaluate the utility of each radar sensor placement in the
FBLR model, we conduct an ablation study where one of the
four radar views is removed at a time and re-run the simulation
for each configuration. This approach helps to assess the impact
of each radar placement on the overall driving performance.

Redact RC 1 IS 1 DS 1

Left 93.65 £2.68 0.78 £0.02 75.79 + 1.79
Right 91.06 £ 091 0.82 + 0.04 76.61 + 3.00
Front 91.07 £ 3.66 0.37 £ 0.10 35.88 + 8.63
Back 96.16 + 3.80 0.77 + 0.03  73.30 + 4.25
No Redact | 93.56 +2.75 0.84 £ 0.03 79.24 £ 1.85

Table 11
REDACTION OF RADAR RESULTS WITH ROUTE COMPLETION (RC),
INFRACTION SCORE (IS), AND DRIVING SCORE (DS). NO REDACT IS THE
SAME RESULT FROM TABLE I AND IS MENTIONED HERE FOR COMPARISON
ONLY.

The results from Table II indicate that redacting the front
view results in the most significant drop in performance, sug-
gesting that the front view is critical for obstacle detection and
lane positioning. In contrast, redacting left or right views has
a smaller impact on performance, indicating that while these
views contribute to lateral awareness, they are less crucial than
the front view. Similar results are also observed for removing
the back radar view. The camera-only model performs the least

Driving Score vs Route Type
B left WEE Right

s Back - Front s FBLR

Driving Score

Residential (3)

Urban (7) Highway (4)

Figure 6. Route-wise driving score for radar redactions. The three categories
have 3, 7, and 4 routes, respectively. The FBLR scores are the original scores,
i.e., without redacting any of the radar views, and are plotted for reference
only.

across all the scores, indicating that having radar views helps
the model.

Route-wise scores from Figure 6 solidify the point that
combining all four views gives optimal situational awareness
in the FBLR model. Throughout all routes, the redaction of
the front view consistently scores lower, suggesting it is more
critical than other perspectives.

C. Experimenting with Radar Resolution

The number of antennas determines the resolution of a radar
sensor; more antennas yield higher resolution but also increase
cost. C-Shenron supports fully configurable radar parameters,
allowing simulation of realistic radar data across a wide range
of sensor configurations. In this case study, we reduce the
number of antennas in the receiver array from 86 (TI Cascade
radar) to 16 (INRAS Radarbook) and demonstrate C-Shenron’s
ability to generate highly accurate radar data even under such
constraints, highlighting its flexibility and realism.

The resulting radar views are seen in Figure 7, where both
the low and high-resolution radar views are generated for the
same scene of the vehicle, making it clear that the Ilatter
configuration has a higher angular resolution than the former
radar configuration. The resulting radar data (16 antennas)

(b) Low Resolution Radar View
Figure 7. Comparison of radar image for a given scenario: (a) Camera View,
(b) Radar view with 16 linear antenna array, (c) Radar view with 86 antenna
array.

(c) High Resolution Radar View



was used for training and evaluation of Front, FB, and FBLR
models, and the results are provided in Table III.

Radar View RC 1 IS 1 DS 1

Front 91.56 +2.26  0.79 + 0.04 73.82 + 4.94
FB 92.61 + 094 0.75 +£0.07 72.75 + 6.85
FBLR 80.69 + 4.65 0.64 + 0.06 54.23 + 5.834
FBLR (86x) 9356 £2.75 0.84 £0.05 79.24 £ 1.85

Table III
RESULTS FOR DIFFERENT RADAR VIEWS USING 16-ANTENNAS WITH
ROUTE COMPLETION (RC), INFRACTION SCORE (IS), AND DRIVING
SCORE (DS). THE 86 ANTENNA RESULTS ARE USED AS A REFERENCE
HERE.

As seen from the table, the high-resolution FBLR (86x)
model achieves much better results when compared to low-
resolution radar configurations, mainly because of having fewer
infractions (higher infraction score). Also, increasing the num-
ber of radar views paradoxically degrades performance, as
evidenced by the FBLR having substantially lower driving
scores. This can be attributed to the blurry and imprecise nature
of low-resolution radar views, which becomes problematic
when multiple views are stitched together, as is also evident by
the front-only model having a higher score than other models.

VI. LIMITATIONS & FUTURE WORK

In this work, we introduced C-Shenron, a high-fidelity radar
simulation framework integrated into the CARLA simulator,
enabling realistic, physics-based radar data generation for E2E
AD research. The key limitation to our approach is that
the simulator requires additional GPU compute and frequent
pauses in the simulation time, effectively requiring higher GPU
computations and larger simulation times.

Looking ahead, we plan to expand our experiments by
incorporating longer and more diverse driving scenarios across
additional CARLA towns and comparing performance with a
broader set of state-of-the-art driving models. C-Shenron lays
the groundwork for radar-first autonomous driving research in
simulation and opens the door to more robust and scalable AD
systems.
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