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Abstract

The advancement of self-driving technology has become
a focal point in outdoor robotics, driven by the need for
robust and efficient perception systems. This paper ad-
dresses the critical role of sensor integration in autonomous
vehicles, particularly emphasizing the underutilization of
radar compared to cameras and LiDARs. While extensive
research has been conducted on the latter two due to the
availability of large-scale datasets, radar technology offers
unique advantages such as all-weather sensing and occlu-
sion penetration, which are essential for safe autonomous
driving. This study presents a novel integration of a realistic
radar sensor model within the CARLA simulator, enabling
researchers to develop and test navigation algorithms us-
ing radar data. Utilizing this radar sensor and showcas-
ing its capabilities in simulation, we demonstrate improved
performance in end-to-end driving scenarios. Our findings
aim to rekindle interest in radar-based self-driving research
and promote the development of algorithms that leverage
radar’s strengths.

1. Introduction
Autonomous systems, especially self-driving cars, rely on
end-to-end pipelines that seamlessly connect perception to
downstream tasks like path planning and navigation. While
robust perception is a critical component of these systems,
the focus in end-to-end approaches is on ensuring that sen-
sor data directly informs actionable decisions. Multimodal
sensor fusion plays a pivotal role in this context, enabling
a holistic understanding of the environment by integrat-
ing complementary inputs from camera, LiDAR and radar
[8, 18]. This fusion enhances the system’s resilience to
varying conditions- radar excels in detecting speed and dis-
tance in adverse weather, while camera offers detailed vi-
sual information for interpreting road signs and traffic sig-

Figure 1. Comparison of views from Camera, Semantic LiDAR,
and Shenron Radar in CARLA. The orange lines outline the road,
red and magenta highlights vehicles, and blue indicates a static
object.

nals [25].

Making multimodal sensors work well together also re-
quires a detailed understanding of how each sensor oper-
ates, including their strengths, limitations, and behavior un-
der different conditions. Expanding on this understand-
ing, a fundamental question lies in determining what the
right configuration and placement of sensors are, enabling
low cost while ensuring robust performance and appropri-
ate sensor fusion algorithms to enable safe perception, nav-
igation, and path planning. Building all different configu-
rations and hardware to achieve these objectives is impos-
sible, highlighting the need for simulation tools. In addi-
tion, training such perception models for autonomous driv-
ing requires significant amounts of data encompassing vari-
ous scenarios to ensure reliable performance under different
conditions [2, 12, 17, 20]. A key challenge here is large-
scale data collection, as collecting data for every possible
situation is nearly impossible. Moreover, the collected data



is significantly impacted by the way the sensors are placed
and their specific characteristics. This challenge empha-
sizes the potential of simulations to enhance real-world data
collection.

The CARLA simulator excels in enabling both percep-
tion and downstream tasks in autonomous driving research.
It facilitates large-scale data collection by generating di-
verse datasets that capture a wide range of scenarios, includ-
ing varying weather conditions and complex traffic environ-
ments [11]. CARLA supports end-to-end training pipelines
by providing accurate simulation of key sensors like cam-
era and LiDAR, making it an effective digital twin for the
rapid development and testing of autonomous systems [1].
Researchers have extensively utilized CARLA to train per-
ception models and integrate them into downstream tasks
like path planning and navigation, as noted in works such as
[7, 8, 16]. The simulator’s flexibility and precision have so-
lidified its role as a vital tool for testing and validating state-
of-the-art approaches, particularly in systems that leverage
multi-modal fusion to achieve robust and reliable perfor-
mance.

While LiDAR is a useful sensor, it struggles with all-
weather sensing due to its reliance on lasers. In contrast,
radar employs millimeter-wave technology and is highly ef-
fective in various conditions[3]. However, the radar model
in the CARLA simulator has significant limitations. Unlike
real-world radar systems that utilize multiple radar beams,
advanced Doppler processing, and sophisticated clutter fil-
tering, CARLA’s radar is a simplified version that lacks
these essential features. It generates data by randomly sam-
pling LiDAR outputs, failing to capture key radar-specific
characteristics, such as sensitivity to motion and environ-
mental influences. Additionally, there have been multiple
velocity computation issues, with moving vehicles display-
ing inaccurate speed readings [10]. These shortcomings
render any research involving CARLA radar inadequate, as
it does not reflect the real-world capabilities of an opera-
tional radar sensor that can be used in autonomous vehicles
[21].

In this paper, we present C-Shenron, an innovative radar
sensor model integrated into the CARLA simulator, ex-
tending the Shenron framework, which previously focused
solely on LiDAR data [4]. C-Shenron allows users to
configure and simulate diverse radar setups with different
number of antenna arrays, thereby enabling comprehensive
multi-modal data collection and simulation for end-to-end
autonomous driving tasks. With C-Shenron, researchers
can experiment with various radar sensor placements, ex-
plore multiple fusion strategies, and generate high-fidelity
datasets for training and testing robust perception models.

To achieve seamless functionality, we designed a server-
side sensor in CARLA that aggregates required data from
the simulation world into a unified stream, enabling efficient

radar data generation and fusion with Shenron existing ca-
pabilities. This innovation bridges the gap between CARLA
and Shenron, establishing a cohesive platform for advanc-
ing radar-based multimodal fusion research in autonomous
driving research.

To demonstrate the functionality of this new sensor, we
gathered data, trained, and evaluated the model within the
CARLA simulator. We are also the first to generate high
quality radar data across various towns and scenarios, utiliz-
ing Kubernetes for automation and scaling. The data gener-
ated from the integrated radar sensors and camera was then
utilized to train a state-of-the-art model [16], improving the
perception capabilities of the framework. This comprehen-
sive training showcased the benefits of multimodal fusion
to achieve accurate and reliable driving in a realistic simu-
lation.

We evaluated the end-to-end model in diverse driving
scenarios in a simulated environment. Using the simula-
tor allowed us to position various radars on the vehicle to
identify the optimal setup for driving performance. An-
other significant challenge was to integrate multiple radar
views to achieve one 360° radar image to provide compre-
hensive situational awareness. We implemented a masking
procedure to stitch these views together which enhanced our
model’s situational awareness. We also evaluate of each
radar view’s utility through a redaction process, ensuring
the model accurately interpreted the combined radar infor-
mation. Our results highlight that radar and camera-based
models achieve better performance in some scenarios and
comparable performance in others, compared to traditional
camera and LiDAR models.

The remainder of the paper is structured as follows:
we review related work, discuss how radar enhances au-
tonomous driving reliability alongside CARLA, detail the
design and implementation of our approach, and conclude
with evaluations and future work proposals.

2. Related Work
The development of sensor technologies for autonomous
driving has predominantly focused on vision-based and
LiDAR-based perception systems, attributed to their high-
resolution capabilities and the availability of extensive
datasets.

Vision-Based Perception: Camera-based approaches
have gained widespread adoption for tasks such as object
detection, lane detection, and scene understanding. The
success of these methods is largely due to the availability of
large-scale datasets like KITTI, Cityscapes, and nuScenes,
which facilitate the training of robust computer vision mod-
els [13]. These datasets have enabled rapid advancements
in visual perception algorithms, leveraging deep learning ar-
chitectures to achieve high accuracy in identifying objects,
detecting obstacles, and recognizing traffic signs and sig-



nals [9].
LiDAR-Based Perception: LiDAR technology is also

prevalent in autonomous vehicle research due to its precise
depth information and accurate 3D mapping capabilities.
This allows for complex tasks such as 3D object detection
and point-cloud segmentation. Significant advancements in
LiDAR-based perception have been supported by dedicated
datasets like the Waymo Open Dataset and SemanticKITTI
[22]. These resources, combined with LiDAR’s ability to
capture detailed 3D spatial information, have made it a pre-
ferred choice for high-resolution sensing in self-driving sys-
tems. However, LiDAR performance can degrade in ad-
verse weather conditions and struggles with occlusion pen-
etration, posing challenges in real-world scenarios [5].

Radar-Based Perception: Radar technology has
emerged as a crucial component in the sensor suite for au-
tonomous vehicles. Sensor fusion techniques have been piv-
otal in enhancing radar-based perception by integrating data
from multiple sensors, including lidar and cameras. This
multi-modal approach leverages the strengths of each sen-
sor type to improve detection accuracy and robustness [8].
Studies have shown that fusing radar data with visual infor-
mation can significantly enhance performance in complex
driving scenarios by providing complementary information
that addresses individual sensor limitations [22].

A novel approach proposed by Kshitiz et al. [3] enhances
radar-based perception by employing multiple radar units to
generate accurate 3D bounding boxes for object detection.
Another work by Kshtiz et al. [4] laid the groundwork for
developing realistic radar sensing models, which we extend
in this paper to enhance the CARLA simulator. However,
challenges remain, such as dealing with sparse data and op-
timizing algorithms to better interpret radar measurements
under varying conditions. By integrating a high-fidelity
radar model, we aim to open new avenues for self-driving
algorithms that utilize radar data effectively.

The CARLA simulator, which stands for CAR Learn-
ing Algorithm, has facilitated numerous advances in au-
tonomous driving research by providing robust support for
various sensors[6, 7, 15, 19, 24]. However, the lack of real-
istic radar sensor simulations within CARLA limits its util-
ity for research focused on radar-based navigation [11].

Multi-Modal Sensor Fusion: The introduction of the
TransFuser model [8] in 2021 marked a significant step
forward in multi-modal sensor fusion approaches for au-
tonomous driving. Utilizing a transformer architecture
for end-to-end driving policy development, TransFuser in-
tegrates data from cameras and LiDAR to enhance per-
formance in complex driving scenarios. By effectively
combining these diverse sensor inputs, it addresses the
limitations inherent to single-sensor approaches. Trans-
Fuser++ [16] builds upon this foundation with improved
sensor integration and advanced data augmentation tech-

niques. It introduces cross-attention mechanisms that better
align inputs from different sensors, addressing compound-
ing errors in trajectory prediction. By incorporating up-
dated training protocols and data handling strategies, Trans-
Fuser++ achieves higher performance benchmarks, such as
CARLA’s Longest6 and MAP leaderboard, demonstrating
its capability to maintain route accuracy while reducing in-
fractions.

This evolution underscores the potential of multi-sensor
fusion approaches in designing more resilient autonomous
driving systems that can integrate new sensors like radar to
enhance perception and decision-making.

3. Background
3.1. Radar in Autonomous Driving
In the real world, Camera and LiDAR are more commonly
used in autonomous driving than radar due to radar’s incon-
sistent standardization and its sensitivity to noise and lower
resolution. However, Radar offers unique benefits com-
pared to LiDAR and cameras, especially in adverse weather
conditions. Unlike optical sensors, radar uses radio waves,
allowing it to penetrate through rain, fog, snow, and dust,
making it more reliable for all-weather performance. Its
long-range detection capabilities, as noted in Table 1, sur-
pass those of LiDAR and cameras, which is particularly use-
ful in high-speed driving and congested environments. Ad-
ditionally, radar’s ability to maintain low noise sensitivity
and track velocity over long distances, as shown in Table 1,
highlights its suitability for challenging driving scenarios.
Radar’s doppler measurement capability, which provides in-
formation on the relative velocity of objects, is crucial for
tasks like path planning, trajectory prediction, and enhanc-
ing spatial resolution.

3.2. CARLA Sensors
Sensors act as the eyes and ears of autonomous vehicles,
making it crucial for the CARLA simulator to provide ac-
curate and realistic sensor simulations. CARLA includes
all the main sensors needed for autonmous driving such as
camera, LiDAR, radar, GNSS (Global Navigation Satellite
System), IMU (Inertial Measurement Unit) and many oth-
ers. Furthermore CARLA includes sensors that are chal-
lenging to access in real-world scenarios due to safety and
logistical constraints, such as collision and lane invasion de-
tectors, an odometer, and a Road Surface Sensor (RSS) that
communicates traffic signals and lane markings.

3.3. Unrealistic Qualities of CARLA Radar
CARLA provides researchers with a unique opportunity to
access high-quality multi-sensor data, which is often chal-
lenging to obtain in real-world environments. However, the
default radar sensor in CARLA has limitations that hinder



Sensor Type Cost Noise
Sensitivity Range Resolution Weather

Resistance
Velocity
Tracking

Height
Tracking

Camera ✓ ✓ • ✓ × × ×
LiDAR × × ✓ • × • •
Radar ✓ ✓ ✓ × ✓ ✓ ✓

Table 1. Comparison of sensor types—Camera, LiDAR, and Radar—across various attributes. Green checkmarks indicate favorable traits,
yellow circles indicate moderate traits, and red crosses indicate unfavorable traits.

its performance in tracking objects behind other vehicles
and in long-range obstacle detection scenarios. It only pro-
vides point cloud data for detection and tracking, lacking
real-time velocity information, which is essential for accu-
rately assessing object motion and ensuring safe navigation.
While point cloud data allows precise mapping through 3D
coordinates, the absence of velocity data forces reliance on
historical position data, which can result in delayed reac-
tions and reduced situational awareness. Furthermore, raw
3D radar data provides a richer, more detailed representa-
tion of the environment compared to traditional radar point
cloud data, making it particularly valuable for applications
in autonomous driving and advanced perception systems.
Our proposed C-Shenron radar provides high-quality, accu-
rate radar data.

4. Design

We integrate a new scalable, high-fidelity, and efficient
radar (Shenron) sensor with the CARLA simulator. Shen-
ron is an open-source framework that can simulate high-
fidelity MIMO radar data using the information from the Li-
DAR point clouds and camera images. It leverages the im-
pulse response captured by LiDAR sensors, which provide
a point cloud representation of the environment, to simu-
late radar data without the need for complex geometries. To
derive accurate radio frequency (RF) reflection profiles for
various materials, the framework uses semantic information
from the camera images. By combining both specular and
scattering reflection models, Shenron achieves a high corre-
lation with real-world radar data, making it a robust tool for
evaluation of radar algorithms.[4].

Shenron requires lidar point cloud data, along with se-
mantic tags and the relative velocity of those points con-
cerning the sensor, as input to generate raw 3D radar data,
which includes range, angle, and doppler dimensions. The
new sensor we introduce on the server side of CARLA ful-
fills these requirements by providing the necessary data. It
is then utilized by Shenron to produce comprehensive 3D
radar outputs, enhancing the fidelity of radar data in au-
tonomous driving simulations.

Figure 2. C-Shenron as the Shenron integration in CARLA

4.1. Challenges in integrating Shenron within
CARLA

Sensors in CARLA follow a pipeline that transforms the
raw sensor data into a usable format. Each sensor type is
represented as a special actor within the simulation. The
sensor actor interacts with the simulated environment and
continuously gathers data based on its type and configura-
tion.

CARLA operates on a client-server architecture, where
the server simulates the virtual world and the client applica-
tion interacts with this simulated environment. The server
handles the physics simulation, traffic management, and
sensor data generation. It also manages the communication
with the client, transmitting sensor data and receiving con-
trol inputs from the client. The client application, typically
written in Python, receives sensor data from the server, pro-
cesses it, and sends control commands back to the server.
Sensors in CARLA retrieve data either at every simulation
step or when the specific event occurs. For example, the
camera generates images at every frame, whereas collision
sensors are activated upon detecting an event. The collected
raw sensor data, along with metadata such as sensor type,
frame number and timestamp, is serialized and transmitted
to the client application via a real time communication pro-
tocol.

On the client side, applications can subscribe to a sen-
sor’s data stream. When a new data frame arrives, a reg-
istered callback function is triggered. This function dese-
rializes the data stream back into a SensorData object and
processes it further. This modular design allows for the in-
tegration of the custom sensors. However, the core sensor
actor, data stream, and server to client communication are
implemented in C++ using specific data structures and func-



tions.

4.2. C-Shenron
To seamlessly integrate the Python-based Shenron sensor
into the C++-based CARLA simulation environment, we
devised a hybrid approach that addresses the fundamen-
tal challenges posed by this integration. We introduced a
custom C++ Raycast Shenron sensor on the server side to
capture point cloud data, including semantic segmentation
and relative velocity information. This approach aligns with
CARLA’s native C++ architecture, ensuring efficient com-
munication and integration with the core simulation loop.
The data collected by the Raycast Shenron sensor along
with metadata is then transmitted to the client side. On
the client side, Shenron processes the received data to gen-
erate the simulated radar data. To mitigate the real-time
latency introduced by the Shenron processing, we paused
the CARLA simulation during this phase, ensuring that the
overall simulation time remains unaffected. The Figure
2 represents the overall picture of the Shenron integration
with CARLA.

4.2.1. Relative Velocity Calculation
We implement the functions required to calculate the rela-
tive velocity in our new Raycast Shenron sensor. We com-
pute the relative velocity vrel of a detected target relative to
the Raycast Shenron sensor, vs. It retrieves the target’s ve-
locity, vt, and calculates the normalized direction vector, d,
from the Raycast Shenron sensor to the target. By finding
the velocity difference between the target and the sensor and
taking the dot product with this direction vector, the func-
tion isolates the component of relative velocity along the
line connecting the sensor and the target. This result, repre-
sents the target’s velocity relative to the Raycast Shenron,

vrel = (vt −vs) ·d

d =
pt −ps

∥pt −ps∥
where pt and ps are the position vectors of the sensor and
target respectively.

4.2.2. Dense Point Cloud Generation
To generate a dense point cloud data with a complete 360-
degree field of view at each simulation step, we concate-
nated two 180-degree frames, aligning the previous frame
with the current ego-vehicle position. By capturing two
half-frames and combining them, we effectively doubled
the point cloud density, resulting in a more accurate and de-
tailed representation of the surrounding environment. This
approach was crucial to generate realistic radar signals.

We developed a comprehensive solution that facilitates
the integration of Shenron sensor into the CARLA system
seamlessly. Additionally, we provide example scripts to

simulate and visualize the Shenron radar data within the
CARLA environment, demonstrating how to effectively use
this radar in your simulations. Detailed instructions and
resources are available as open source on the following
GitHub repository: CARLA-Shenron-release.

5. Implementation
In this section we’ll dive into how we utilized integrated
Shenron in CARLA to train a end-to-end Perception and
Driving model, built on top of the Transfuser++ architecture
[16].

5.1. End-to-end driving with CARLA Garage
Safe navigation is the ultimate goal of a self-driving car,
which includes identifying obstacles, planning the path
around them and eventually reaching the goal. Integrating
a realistic sensor model in CARLA gives us the ability to
test the effect of radar algorithms on downstream tasks like
path planning and navigation. Hence we use this opportu-
nity to perform extensive experimentation on the effect of
using radar data on downstream tasks. In this section we
first describe the end-to-end driving system used for percep-
tion and planning followed by the results obtained when we
evaluated navigation performance achieved by using radar.

5.1.1. CARLA Garage
We use the CARLA Garage [14] platform for generation
of high-quality data and training of end-to-end autonomous
driving models. The platform provides supports integra-
tion and deployment of both pretrained and custom models,
offering necessary scripts and tools for dataset generation,
model training, and benchmark evaluations, thus stream-
lining the process. Through this platform, we customized
across multiple sensor placements and input data for train-
ing the end-to-end Deep Learning model of our choice. The
output of the model is used as control signals for actions
such as steering, brakes and gas that can be used to drive a
autonomous agent in the simulation.

5.2. Dataset Generation
CARLA employs an expert autonomous agent that emulates
driving of an experienced human driver, producing highly
reliable driving data which is essential for training large au-
tonomous driving models. This expert agent follows prede-
fined traffic rules, navigates traffic scenarios, and interacts
safely with obstacles just like an experienced human driver
would perform. This expert also has direct access to de-
tailed map data like lane boundaries, traffic signals, speed
limits, and waypoints, enabling precise route planning and
rule compliance without relying on raw sensor interpreta-
tion. Additionally, the expert bypasses complex object de-
tection, directly retrieving the exact locations, velocities,
and classifications of vehicles, pedestrians, and obstacles,

https://github.com/ucsdwcsng/carla-shenron-release


thereby eliminating perception errors and ensuring reliable
tracking. Furthermore, it has perfect localization within the
environment, sidestepping common errors in real-world lo-
calization methods like GPS and LiDAR. This access to pre-
cise data enables the generation of a robust, high-quality
dataset, ideal for training and benchmarking autonomous
systems in controlled simulations.

To accelerate data collection, we launch multiple
CARLA instances in parallel, allowing simultaneous data
generation across various scenarios and weather conditions.
This approach enhances the dataset’s diversity and rich-
ness, reducing the collection time from days to hours. Us-
ing a Kubernetes cluster, we launch 210 jobs, each corre-
sponding to a distinct CARLA instance for different route-
scenario combinations across all 8 CARLA towns (Town01-
Town07 and Town10), reserving Town08 and Town09 for
evaluation. This results in 70 unique combinations, with
each combination repeated thrice, yielding a total of 555k
frames. For our experiments, we only train the model on
185k frames, excluding repetitions. The additional data
gathered may be utilized in future experiments to assess the
impact of a larger training dataset on model performance.
We will also release the complete collected dataset for the
research community.

5.3. Integrating with TF++ Architecture

In CARLA Garage, we employ Transfuser++, a state-of-
the-art model, for both perception and planning tasks. The
Transfuser++ architecture features a transformer-based sen-
sor fusion module that integrates camera and LiDAR data,
alongside auxiliary branches for perception tasks like clas-
sification, detection, and segmentation. In our evaluations,
we don’t utilize any of these auxiliary branches and only use
the Transformer encoders and decoders. Additionally, it in-
cludes a transformer decoder to output the target speed and
path for the autonomous vehicle. For more details on the
architecture, refer to [16]. In our implementation, we create
high-fidelity radar data from Shenron as range-angle plots
and input these images directly into the BEV branch, by-
passing the LiDAR images as seen in Figure 3, and further
conduct end-to-end training and evaluation of this model.

Camera

C-Shenron

Radar BEV

Transformer

BEV
Branch

Image
Branch

Carla World
Engine

Velocity

MLP Classifier 
for Target Speed

GRU Decoder
for Path

Goal
Location

Updated

LiDAR

Velocity

Updated
Waypoint

Transformer
Decoder

Figure 3. C-Shenron with the Transfuser++ Architecture

5.4. Training details
To train our model, we adopted the same loss function em-
ployed in the Transfuser++ architecture [16]. Our training
process involved a batch size of 12 and 30 epochs. We uti-
lized a learning rate of 3x10-4, and trained the model on
a system equipped with 6 NVIDIA A10 GPUs, which re-
quired approximately 2 days to complete the training pro-
cess.

6. Evaluation
In this section, we evaluate our trained model, which incor-
porates the Shenron sensor system, by comparing its driv-
ing performance with that of current state-of-the-art end-to-
end driving models. Our primary model for processing au-
tonomous vehicle sensor data is Transfuser++ [16]. We also
present two case studies that explore varying radar sensor
placements and assess the impact of these configurations.
Our results indicate that radar images can serve as an ef-
fective alternative to LiDAR, delivering comparable perfor-
mance along with enhanced all-weather capability. These
results reopen the field for utilizing radars in end-to-end au-
tonomous driving.

6.1. Metrics
The driving proficiency of an autonomous agent is evaluated
through various metrics provided by CARLA that gives in-
sights into different aspects of driving behavior. In the con-
text of our setup, we evaluate on a set of metrics that offers
a comprehensive understanding of the agent’s performance.
The specific metrics are :-
• Driving Score: The primary metric of the leaderboard,

calculated as the product of the other two metrics: route
completion and the infractions penalty.

• Route completion: It is the percentage of the route dis-
tance completed by an agent.

• Infraction Penalty: The leaderboard tracks multiple
types of infractions, and this metric consolidates all in-
fractions triggered by an agent into a single score, calcu-
lated as a geometric series.
In the CARLA simulation, infractions are penalized

based on severity. For example, collisions with pedestrians,
vehicles, and static objects incur varying penalties. Traffic
violations, such as running red lights or stop signs, also re-
sult in higher penalties. Indefinite blockage of the vehicle
leads to a timeout and additional penalties.

Agents must adhere to surrounding traffic speeds and
yield to emergency vehicles, with noncompliance resulting
in further penalties. Driving off-road negatively affects the
route score, as that segment is excluded. Certain events, like
significant deviations from the route or prolonged inactivity,
can lead to a simulation shutdown. Each of these incidents
is meticulously recorded, providing comprehensive insights



into the performance of the agent throughout the simulation
[23]. Once all routes are completed, an overall metric for
each of the three types is calculated by taking the arithmetic
mean of all individual route metrics combined.

6.2. Case Studies

We evaluate our models using the routes from NEAT [7]
paper, which include various settings like highways, urban
areas, and residential zones with diverse road layouts and
obstacles to simulate urban conditions. Agents face traf-
fic scenarios based on NHTSA typology, such as navigating
intersections, responding to pedestrians, cyclists, and other
road users, and many more. To ensure consistency, each
model was tested on the same set of 14 routes over 5 it-
erations under stable, moderate conditions without extreme
weather. Additionally, we carried out two case studies to
examine the impact of different sensor placements and the
impact of each radar view on performance in end-to-end
driving tasks.

6.2.1. Does increasing radar views help?
In this case study we analyze the potential benefits of in-
creasing the number of radar views on our autonomous ve-
hicle. The Shenron radar generated from combining camera
and LiDAR offers a 180° field of view (FOV), but the image
quality decreases as the coverage angle widens. We evaluate
three configurations of our radar models: front only radar,
front and back radars, and full coverage with front, back,
left, and right radars (we will denote as FBLR). All config-
urations are also fused with camera features. Note that all
the views of radar have 180° FOV.

When using front and back radar views, combining them
is straightforward; the two can simply be concatenated ver-
tically to create a complete 360° image, as illustrated in
Figure 4a. However, an interesting challenge arises when
attempting to merge the four radar views into a single high-
quality image. A basic method would be to extract 90° FOV
from each image and arrange them in a circular pattern, but
this approach is inefficient. Shenron-generated radar im-
ages contain concentric circular lines with slightly varying
radii, depending on the view, resulting in diagonal lines and
irregular patterns across the combined radar image, which
impairs perception. This can also be seen in Figure 4a,
where a horizontal line is present in the middle of the image.

An alternative approach involves overlapping of border
regions from different views to average out this inconsis-
tency. This technique uses a specialized mask as seen in
Figure 4b which are then rotated for proper orientation and
combined through pixel-wise addition. The mask’s magni-
tude decreases linearly before the ±45° line and drops to
0 beyond the line, which compensates for brightness varia-
tion in the overlapping regions when performing pixel-wise
addition. The resulting composite radar image Figure 4c

demonstrates the efficacy of this approach and creates an
accurate representation of the vehicle’s surroundings.

(a) FB cat (b) Mask for FBLR (c) FBLR cat

Figure 4. Images representing: (a) Radar image after Front+Back
concatenation, (b) Mask for FBLR concatenation, (c) Radar image
after FBLR concatenation.

The findings are presented in Table 2. LiDAR serves as
the baseline for comparison, being the original version of
Transfuser++ retrained on the collected LiDAR and Camera
data using the same parameters. Among the radar models,
the Front+Back configuration demonstrates the best perfor-
mance across all metrics, significantly outperforming the
LiDAR model (+6 in DS and +0.05 in IS). The Front-only
radar model also surpasses LiDAR, indicating that a single
radar view can exceed the baseline performance. Notably,
the FBLR configuration has a lower DS than Front+Back,
likely due to its low RC score; however, it exhibits more sta-
bility and lower variance, suggesting that additional field-
of-view sensors enhance consistency.

Radar View DS ↑ RC ↑ IS ↑
LiDAR (ours) 76.84 ± 5.26 95.93 ± 3.43 0.79 ± 0.05
Front 79.97 ± 5.36 96.52 ± 3.02 0.82 ± 0.06
Front+Back 82.39 ± 4.87 97.03 ± 2.95 0.84 ± 0.03
FBLR 79.24 ± 1.85 93.56 ± 2.75 0.84 ± 0.05
Expert 93.82 97.394 0.964

Table 2. Results for different radar views with Driving Score (DS),
Route Completion (RC) and Infraction Score (IS).

Lastly, the Expert model represents statistics from
CARLA’s driver agent, which sets a theoretical upper per-
formance limit as its training data was derived from this
agent. Although none of the models achieve expert per-
formance, the Front+Back radar configuration is the closest
across all metrics. Overall, radar-based models outperforms
the Camera + LiDAR setups in all key areas.

Looking deeper into driving scores from Figure 5, in
Urban routes, Front+Back performed slightly better than
FBLR, suggesting rear radar coverage is beneficial in con-
gested traffic. On Highways, FBLR greatly outperformed
the others, which outlines the importance of 360-degree
radar for detecting vehicles from multiple directions. Over-
all, additional radar views enhance performance across
routes, with the greatest impact on highways.

Table 3 presents other scores where the FBLR configura-

https://www.nhtsa.gov/sites/nhtsa.gov/files/811731.pdf


Figure 5. Route-wise Driving Score for Multiple Radar Views.
The three categories have 3, 7 and 4 routes respectively.

tion excels in detecting vehicular collisions, static objects,
and route deviations, while the Front+Back configuration
performs best in red light infractions and agent timeouts.
FBLR’s strong vehicle detection benefits from its multi-
directional radar views, enhancing its ability to avoid obsta-
cles (perfect score in static object detection). However, the
Front+Back configuration minimizes red light infractions
and completely avoids timeouts, suggesting that fewer in-
puts simplify decision-making. In conclusion, FBLR is op-
timal for environmental awareness, while Front+Back ex-
cels in rapid decision-making situations, both surpassing
driving performances by LiDAR.

Radar View Veh ↓ Stat ↓ Red ↓ Dev ↓ TO ↓
LiDAR 0.62 ± 0.16 0.00 0.14 ± 0.09 0.02 ± 0.05 0.04 ± 0.04
Front 0.51 ± 0.21 0.06 ± 0.04 0.05 ± 0.06 0.06 ± 0.04 0.00
Front+Back 0.43 ± 0.12 0.01 ± 0.02 0.05 ± 0.04 0.01 ± 0.03 0.00
FBLR 0.32 ± 0.06 0.00 0.26 ± 0.10 0.00 0.09 ± 0.08
Expert 0.00 0.00 0.00 0.00 0.14

Table 3. Results for different radar views with Vehicle Infractions
(Veh), Static Object Collisions (Stat), Red Light Infractions (Red),
Route Deviations (Dev) and Agent Time Outs (TO).

6.2.2. Redaction of Radar views
To evaluate the utility of each radar sensor placements in
the FBLR model, we conduct an ablation study where one
of the four radar views are removed at a time and re-run the
simulation for each configuration. This approach helps to
assess the impact of each individual radar placement on the
overall driving performance.

Redact DS ↑ RC ↑ IS ↑
Camera only 64.35 85.83 0.70
Left 75.79 ± 1.79 93.65 ± 2.68 0.78 ± 0.02
Right 76.61 ± 3.00 91.06 ± 0.91 0.82 ± 0.04
Front 35.88 ± 8.63 91.07 ± 3.66 0.37 ± 0.10
Back 73.30 ± 4.25 96.16 ± 3.80 0.77 ± 0.03
No Redact 79.24 ± 1.85 93.56 ± 2.75 0.84 ± 0.03

Table 4. Redaction of radar results with Driving Score (DS), Route
Completion (RC) and Infraction Score (IS).

The results from the Table 4 indicate that, redacting the

front view results in the most significant drop in perfor-
mance suggesting that the front view is critical for obstacle
detection and lane positioning. In contrast, redacting left or
right views has a smaller impact on performance indicating
that while these views contribute to lateral awareness, they
are less crucial than the front view. Similar results are also
observed for removing the back radar view as well. The
camera only model performs the least across all the scores
indicating that having radar views helps the model.

Figure 6. Route-wise Driving Score for Redaction of Radar. The
three categories have 3, 7 and 4 routes respectively.

Route-wise scores from Figure 6 solidify the point of
combining all four views gives for optimal situational
awareness in the FBLR model. Throughout all routes, the
redaction of front view consistently scores lower, suggest-
ing it is very critical than other perspectives.

Redact Veh ↓ Stat ↓ Red ↓ Dev ↓ TO ↓
Camera only 1.661 0.73 0.00 0.00 0.14
Left 0.60 ± 0.14 0.00 0.37 ± 0.08 0.19 ± 0.02 0.17
Right 0.47 ± 0.22 0.02 ± 0.04 0.21 ± 0.06 0.20 ± 0.05 0.14 ± 0.07
Front 4.60 ± 0.76 0.42 ± 0.15 0.64 ± 0.20 0.46 ± 0.12 0.24 ± 0.14
Back 0.87 ± 0.18 0.00 0.11 ± 0.07 0.30 ± 0.13 0.11 ± 0.06
No Redact 0.32 ± 0.06 0.00 0.26 ± 0.10 0.00 0.09 ± 0.08

Table 5. Redaction of radar results with Vehicle Infractions (Veh),
Static Object Collisions (Stat), Red Light Infractions (Red), Route
Deviations (Dev) and Agent Time Outs (TO).

Similar results are observed from Table 5 where in the
front radar leads to an unusually high vehicle detection
score, likely due to misclassification. Overall, the model
performs best with all views present, showcasing that each
radar view offers unique contributions, with the front view
essential for vehicle detection and stability.

7. Future Work
In future work, we aim to extend our evaluation of C-
Shenron in CARLA by incorporating a more diverse set of
routes from NEAT and other evaluations. Furthermore, we
plan to add effective fusion techniques from multiple views
of radars. We would also like to evaluate more low and
high resolution radars. Additionally, longer and more var-
ied routes will be incorporated to demonstrate the robust-
ness of all community approaches. Expanding the eval-



uation to cover a broader range of towns and conditions
will also allow for more comparisons between our radar-
based model and other state-of-the-art (SOTA) models be-
yond Transfuser++.
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