

mmSubArray: Enabling Joint Satellite and Terrestrial Networks in Millimeter-wave Bands

Rohith Reddy Vennam, Ish Kumar Jain, Nagarjun Bhat, Suriyaa M, Luke Wilson, Dinesh Bharadia

Terrestrial networks (5G)

- We have more smart phones than people in the world (>8B), highlights the importance for connectivity and accessibility.
- Terrestrial networks such 5G offers a high speed and low latency link to vast number of users.

5G base station coverage area

2

Terrestrial networks: Coverage is limited

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Rohith Reddy Vennam

3

Satellite direct-to-device connectivity

 With latest advancements in smartphones and LEO satellites, terrestrial devices can now directly connect to satellites

5G base station coverage area

Satellite enabled coverage

Satellite direct-to-device connectivity: *challenges*

5G base station coverage area

Satellite enabled coverage

Proposed Joint satellite and terrestrial networks (JointNets)

5G base station coverage area

Satellite enabled coverage

Two requirements for JointNets

5G base station coverage area

JointNets challenge: Interference

- When a satellite ground station and a 5G base station are in proximity and use overlapping frequency bands, it can lead to interference issues
- Ground stations transmit uplink signals in the 27.5-30 GHz band with high transmit power. Further, unlike GEO satellites, LEO satellites move rapidly, requiring frequent dish realignment and causing sidelobe leakage.
- These can lead to significant interference at 5G base stations, resulting in poor signal-to-noise ratio (SNR) or link failures.

ectrical and Computer Engineerin

5G base station coverage area

8

Interference: Co-channel and Adjacent channel

Co-channel Interference

- When multiple sources transmit in overlapping frequency bands.
- Interference power increases the noise floor, resulting in poor signal-to-noise ratio (SNR) or may cause link failure.
- ✤ Adjacent channel interference
 - When there is a simultaneous transmission in the adjacent channel.
 - Adjacent channel interference increases dynamic range on the receiver, there by degrading step size and leading to increase in quantization noise.

Rohith Reddy Vennam

9

Current approaches to address interference (when *nearby*)

Approach	Full Spectrum Usage (Co-existence)	Coverage gaps (Coexistence)	Enabling backhaul	Comments
Frequency separation (Filtering)	×		\bigcirc	Significant wastage of spectrum (full overlap can lead to 100% wastage)
Direction Separation (Beam nulling)	\bigcirc	×	×	Effective spectrum usage but creates coverage gaps and cannot backhaul

How to enable **backhaul** and **coexistence** while fully utilizing spectrum and avoiding coverage gaps?

Our approach: key insights

- Satellite interference is localized
 - \Longrightarrow Satellite ground station interference only occurs in partial bandwidth
- Key insights
 - Divide the available bandwidth into overlapping and non-overlapping bands.
 - Beam non-overlapping bands in interference-prone or any other necessary direction
 - Beam overlapping bands into non-interfering directions.

Serving users in non-interfering directions with overlapping band using phased array-1

band using Phased Array-2

Fundamental problem with phased array

Phased array

- Beams full bandwidth in one direction
- It cannot split and beam in different directions

12

Proposed *mmSubArray* solution

mmSubArray approach

Divide overall bandwidth into multiple overlapping and non overlapping sub-bands Use different phased arrays for different sub-bands

Rohith Reddy Vennam

CSNG

Proposed *mmSubArray* solution (a): *Beaming nonoverlapping band to satellite ground station*

Enabling backhaul through non-overlapping band

Proposed **mmSubArray** solution (b): Suppressing interference and supporting users

Simulator Results: *Beamforming in frequency and space*

Rohith Reddy Vennam

16

Simulator Results: Splitting and Nulling

Supporting user in interferer directions

Splitting: Supporting users in non-interferer directions

Splitting + Nulling: Supporting users in non-interferer directions with nulling

17

UC San Diego JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Over-the-air experiments: Hardware Setup

Hardware setup with commercial phased arrays mimicking 5G user (UE), Interferer and Base station

VCSNG

Over-the-air experiments: Results

mmSubArray Prototype: *Demo video* (*link*: <u>https://www.youtube.com/embed/uGWcX8MJM4Y</u>)

mmSubArray suppresses interference in overlapping bands by beaming in non-interfering directions and applying nulling

Rohith Reddy Vennam

WCSNG

mmSubArray Enables *JointNets*

- ** High speed wireless **mmWave backhaul** – no more expensive fiber backhual.
- ** Ensures **Coexistence** - suppress interference and support users effectively.
- * Achieves *high spectral efficiency* on both networks and *avoid coverage gaps*.

Satellite

