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Spectrum information systems process spectrum
data and extract useful information
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Spectrum information systems process spectrum

data and extract useful information \
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Data generation and testing for spectrum
information applications is difficult!
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Data generation _ Algorithms/ Metrics
+ Evaluation framework Receiver Syst Insights
ystems Results

Profit!

This is hard!

Only ~33% of NSF-SWIFT listed ML
publications have available datasets!*

*thanks to Sangwon Shin, School of Computing UNL for compiling this metric
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Wireless spectrum data should comprise of
multiple dynamic transmitters
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Context and metadata are a necessity
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Real-time, wireless evaluations help support radio
dynamic applications
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RFSynth: Our contributions

» System design for simultaneous ?
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Demo, data gallery, use-cases
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Generating representative RF data with many
transmitters is hard!
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Controlling and orchestrating real devices is not always feasible




Layered approach to modeling simultaneous
transmitters
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Not just the layers: the environment too!

Dn\\

Higher Layers

PHY Layer
Chain

Receiver

UCSan Diego
omputer Engineerin




Not just the layers: the environment too!
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L everage layered approach to design data
generation
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L everage layered approach to design data
generation
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L everage layered approach to design data
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L everage layered approach to design data
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L everage layered approach to design data

generation
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L everage layered approach to design data
generation
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L everage layered approach to design data
generation
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L everage layered approach to design data
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Extending to multiple simultaneous signals
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Extending to multiple simultaneous signals
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Extending to multiple simultaneous signals
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Defining metadata abstractions
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Defining metadata abstractions
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Defining metadata abstractions

Analog effects — “source” metadata
Log transformations, update metadata
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Example metadata

{
" report type ": " signal " ,
" instance name ": " bBiaaUMmSQmgIfLwle " ,
" protocol ": " unknown " ,
" modality ": " single carrier " ,
" modulation ": " gamle " ,
" activity type ". " overt baseline " ,
" time start ": 1684952693.346253 ,
" time stop ": 1684952803.348253 ,
" freq lo ": 2481.875 ,
" freq hi ": 2482.125 ,
r _CEIILSL_LI_Eq . 1
" rxl ": 2.482 E +9
b
" reference time ": 65.001 ,
" reference freq ": 2482 ,
" timeLength s ": 110.002 ,
" bandwidth Hz ": 0.25

Signal level metadata

Freq
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-xample metadata

report type ": " energy " ,

instance name ": " bBiaaUMmSQOmgIfLwOeOEfE " ,
time start ": 1684952693.346253 ,

time stop ": 1684952693.348253 ,

freq lo ": 2481.875 ,
freq hi ": 2482.125 ,
timeLength s ": 0.0020000000000006679 ,
bandwidth Hz ": 0.25

" report type ": " signal " ,

" instance name ": " bBiaaUMmSQmgIfLwOe "
" protocol ": " unknown " ,

" modality ": " single carrier " ,

" modulation ": " gamle " ,

" activity type ". " overt baseline " ,
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Energy level metadata
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Freq

time start ":
time stop ":

1684952693.346253 ,
1684952803.348253 ,

" freq lo ": 2481.875 ,
" freq hi ": 2482.125 ,
r _Ce[lLeL_.LJ'_Eq . 1

" rxl ": 2.482 E +9

4

reference time ": 65.001 ,
reference freq ": 2482 ,
timeLength s ": 110.002 ,
bandwidth Hz ": 0.25

’

Signal level metadata




-xample metadata

report type ": " energy " ,

instance name ": " bBiaaUMmSOmgIfLwOeOEfE
time start ": 1684952693.346253 ,
time stop ": 1684952693.348253 ,

freq lo ": 2481.875 ,
freq hi ": 2482.125 ,
timelength s 0.00Z20000000000000079 4,

bandwidth Hz ": 0.25

" report type ": " signal " ,

" instance name ": " bBiaaUMmSQmgIfLwOe "
" protocol ": " unknown " ,

" modality ": " single carrier " ,

" modulation ": " gamle " ,

" activity type ". " overt baseline " ,
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Energy level metadata
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1684952693.346253 ,
1684952803.348253 ,

" freq lo ": 2481.875 ,
" freq hi ": 2482.125 ,
r _Ce[lLeL_LJ’.Eq . 1

" rxl ": 2.482 E +9

4

reference time ": 65.001 ,
reference freq ": 2482 ,
timeLength s ": 110.002 ,
bandwidth Hz ": 0.25

’

Signal level metadata




Signal generation support

Modulation only Protocol Compliant | Anomalous Signals
FSK family — FSK, GFSK, LTE Spread spectrum
MSK,GMSK interference
PSK family 5G NR Sinusoidal spurs
QAM family Zigbee RF Emanations
Analog Modulations — Wi-Fi Gaussian noise
AM/FM bursts
OFDM LoRa
PAM, OOK BLE

Traffic \
Generation » D +
PHY Layer Baseband Metadata

|Q Data
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Analog artifacts and environment — implementation
considerations
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Channel models

Channel Model Model representation*
|dentity h(n)=1,vn
Rician = 1
— / i 2
h,[m] o0 1(3N(0,0{,)
Free space pathloss L = 20*log10(4mtR/A)
Rayleigh Ih[m]|? follows the distribution,
f(x)= = exp {_—f}, x>0
Oy Oy

*Fundamentals of wireless communication by David Tse & Pramod Vishwanath
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Channel models

Channel Model Model representation*
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Enabling, wireless, real-time evaluation
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Live effects -- motion
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Test in real-RF environments
Respond to changes
Long-term studies
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/Q generation does not scale to real-time,
long time-scale testing

A
2000 | — |
—
—
1800 Total Time of 1Q to be 2000 secs
— generated
Time Sample Rate 100e6
(in sec) —
Total Sample generated 2e11 samples
Total file size 1600 GB
—
0 >
800MHz Freq

1/Q file sizes scale linearly with time and observation bandwidth
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Insight: signals can be "compressed’
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Insight: signals can be "compressed’
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Insight: signals can be "compressed’
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Insight: signals can be "compressed’

2006‘\ | —
— Total Time of IQ to be 2000 secs
' generated

Sample Rate 100e6
Time

Total complex IQ
(in sec) Samples generated

Total file size 80 MB!
(compressed)

1800

I

2e11 samples

I

I

> Assumptions:
800MHz Freq Packet duration is 100ms

Total IQ samples to be generated: 10e6
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Insight: signals can be "compressed’
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Connecting RFSynth to the wireless world through
SDRs
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Connecting RFSynth to the wireless world through
SDRs

Receiver
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SDR interface dynamically maps signals to
transmitters
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SDR interface dynamically maps signals to
transmitters
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SDR interface dynamically maps signals to
transmitters
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RFSynth usage flow

N+ 2

IQ Data Metadata

5

=) — |4

Configuration file Matlab framework Testbed
config

SDR
Interface

A
é Metadata
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Demo video

YouTube Link: https://www.youtube.com/watch?v=inNMCqg50WZ0

UC San Diego
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https://www.youtube.com/watch?v=inNMCq5oWZ0

RFSynth @ UCSD Signals Lab

\ \\ 1601K &) N

Lab-space with 5x N320 + 3x SM200C + 4x X300, Anechoic RF environment for
GPS Sync calibration and measurement

uuuuuuuuuuuuu

performance compute
UC San Diego
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Gallery: Modulation types
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Gallery: traftic generation
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Gallery: protocol compliant signals

25

35

20 30
W W 25 n
E1s £ E
[0 o 20 ()
£ £ =
i 10 =15 =

10

5
5
-10 -5 0 5 10 15 -10 -5 0 5 10 15
Frequency (MHz) Frequency (MHz) Frequency (MHz)

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering




RF band re-creation : 2.45 GHz spectrum collect

Wi-Fi OFDM
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RF band recreation : 2.45 GHz spectrum re-created
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RFSynth for energy detector development
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R Bell, K Watson, T Hu, | Poy, F Harris, D Bharadia Searchlight: An accurate,
sensitive, and fast radlio frequency enerqy detection system. |EEE MILCOM 2023
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RFSynth for automatic modulation recognition

Parameter RM aztgggt"(?‘lc RFSynth
Modulation 11 27
LTE, 5GNR, BLE,
Protocols N/A Zigbee, LoRa,
WiFi
) -20:18 _
SNR pOI"tS (inconsistent across Conflgurable
modulatlonsg
?_gﬁ‘gﬁﬁ 128 Configurable

*-T.J. O'Shea, J. Corgan and T. C. Clancy, "Unsupervised representation learning of

structured radio communication signals," 2076 First International Workshop on
Sensing, Processing and Learning for Intelligent Machines (SPLINE), Aalborg,

Denmark, 2016, pp. 1-5, doi: 10.1109/SPLIM.2016.7528397.

* - deepsig.ai
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R Mathuria, S Rajagopal, D Bharadia, Fourier Meets Gardner: Robust Blind
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RFSynth: framework for dynamic spectrum data

generation
* Generate labelled datasets P é P e g Sy RN B
with multiple simultaneous tx . f—\é N f kg
- Create dynamic spectrum R | it
environments and transmit o L e BT 00 L5
them in your testbed —
» Foundation for digital twin
and data driven development
Code
github.com/ucsdwcsng/rfsynth
Questions?

UCSan Diego
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https://github.com/ucsdwcsng/rfsynth
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