

RFSynth: Data generation and testing platform for spectrum information systems

Raghav Subbaraman^{*1,} Hari Prasad Sankar^{1*}, Tianyi Hu², Dinesh Bharadia¹

¹University of California San Diego, ²JASR Systems *equally credited authors

Spectrum information systems process spectrum data and extract useful information

Spectrum information systems process spectrum data and extract useful information

Data generation and testing for spectrum information applications is difficult!

*thanks to Sangwon Shin, School of Computing UNL for compiling this metric

WCSNG

Wireless spectrum data should comprise of multiple dynamic transmitters

Context and metadata are a necessity

Real-time, wireless evaluations help support radio dynamic applications

Live effects -- motion

Test in real-RF environments Respond to changes Long-term studies

RFSynth: Our contributions

- System design for simultaneous multi-signal data generation
- Propose abstractions for metadata context
- Support for real-time, wireless evaluations
- Demo, data gallery, use-cases

Generating representative RF data with many transmitters is hard!

Controlling and orchestrating real devices is not always feasible

Layered approach to modeling simultaneous transmitters

Not just the layers: the environment too!

Not just the layers: the environment too!

Environment: Channel, superposition

Traffic Generation PHY Layer

Baseband I/Q

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

11

Baseband I/Q @ Receiver's sample rate

Baseband I/Q @ Receiver's sample rate

11

Baseband I/Q @ Receiver's sample rate

11

Extending to multiple simultaneous signals

Extending to multiple simultaneous signals

Extending to multiple simultaneous signals

Defining metadata abstractions

Defining metadata abstractions

Signal Generator Signal characteristics, Transmission characteristics

"signal"

Conceptual unit

"energy" One transmission

Defining metadata abstractions

Analog effects – "source" metadata Log transformations, update metadata

Example metadata

Signal level metadata

Example metadata

Signal level metadata

Example metadata

Freq

" report type ": " signal " , " instance name ": " bBiaaUMmSQmgIfLwOe " , " protocol ": " unknown " , modality ": " single carrier " , " modulation ": " qam16 " , activity type ": " overt baseline " time start ": 1684952693.346253 , " time stop ": 1684952803.348253 , " freq lo ": 2481.875 , " freq hi ": 2482.125 , rx center ireq ": { " rx1 ": 2.482 E +9 " reference time ": 65.001 , " reference freq ": 2482 , " timeLength s ": 110.002 , " bandwidth Hz ": 0.25

Signal level metadata

Signal generation support

Modulation only	Protocol Compliant	Anomalous Signals	
FSK family – FSK, GFSK, MSK,GMSK	LTE	Spread spectrum interference	
PSK family	5G NR	Sinusoidal spurs	
QAM family	Zigbee	RF Emanations	
Analog Modulations – AM/FM	Wi-Fi	Gaussian noise bursts	
OFDM	LoRa		
PAM, OOK	BLE		
Traffic			

Analog artifacts and environment – implementation considerations

Channel models

Channel Model	Model representation*
Identity	h(n)=1, ∀ n
Rician	$h_{\ell}[m] = \sqrt{\frac{\kappa}{\kappa+1}} \sigma_{\ell} e^{j\theta} + \sqrt{\frac{1}{\kappa+1}} \mathcal{CN}(0, \sigma_{\ell}^2)$
Free space pathloss	L = 20*log10(4πR/λ)
Rayleigh	$\begin{aligned} h[m] ^2 \text{ follows the distribution,} \\ f(x) = \frac{1}{\sigma_\ell^2} \exp\left\{\frac{-x}{\sigma_\ell^2}\right\}, \ x \ge 0 \end{aligned}$

*Fundamentals of wireless communication by David Tse & Pramod Vishwanath

Channel models

Channel Model	Model representation*		
Identity	h(n)=1, ∀ n		
Rician	$h_{\ell}[m] = \sqrt{\frac{\kappa}{\kappa+1}} \sigma_{\ell} e^{j\theta} + \sqrt{\frac{1}{\kappa+1}} \mathcal{CN}(0, \sigma_{\ell}^{2})$		
Free space pathloss	L = 20*log10(4πR/λ)		
Rayleigh	$ h[m] ^{2} \text{ follows the distribution,}$ $f(x) = \frac{1}{\sigma_{\ell}^{2}} \exp\left\{\frac{-x}{\sigma_{\ell}^{2}}\right\}, \ x \ge 0$		

New channel models are plug-and play within the modular design

*Fundamentals of wireless communication by David Tse & Pramod Vishwanath

18

Enabling, wireless, real-time evaluation

Live effects -- motion

Test in real-RF environments Respond to changes Long-term studies

I/Q generation does not scale to real-time, long time-scale testing

Total Time of IQ to be generated	2000 secs
Sample Rate	100e6
Total Sample generated	2e11 samples
Total file size	1600 GB

I/Q file sizes scale linearly with time and observation bandwidth

Total Time of IQ to be generated	2000 secs
Sample Rate	100e6
Total complex IQ Samples generated	2e11 samples
Total file size (compressed)	80 MB!

Assumptions: Packet duration is 100ms Total IQ samples to be generated: 10e6

Total Time of IQ to be generated	2000 secs
Sample Rate	100e6
Total complex IQ Samples generated	2e11 samples
Total file size (compressed)	80 MB!

Assumptions: Packet duration is 100ms Total IQ samples to be generated: 10e6

Approximate signals as repeating bursts at precise time intervals! -> constant I/Q size

Connecting RFSynth to the wireless world through SDRs

Connecting RFSynth to the wireless world through SDRs

SDRs allow the transmitters to directly interface with the real world environment

SDR interface dynamically maps signals to transmitters

SDR interface dynamically maps signals to transmitters

SDR interface dynamically maps signals to transmitters

RFSynth usage flow

YouTube Link: https://www.youtube.com/watch?v=inNMCq5oWZ0

RFSynth @ UCSD Signals Lab

Lab-space with 5x N320 + 3x SM200C + 4x X300, GPS Sync

Anechoic RF environment for calibration and measurement

Data generation, visualization, high performance compute

Gallery: Modulation types

Gallery: traffic generation

Gallery: protocol compliant signals

RF band re-creation : 2.45 GHz spectrum collect

RF band recreation : 2.45 GHz spectrum re-created

RFSynth for energy detector development

R Bell, K Watson, T Hu, I Poy, F Harris, D Bharadia *Searchlight: An accurate, sensitive, and fast radio frequency energy detection system.* IEEE MILCOM 2023

RFSynth for automatic modulation recognition

Parameter	RML 2016.04C dataset*	RFSynth		
Modulation	11	27		
Protocols	N/A	LTE, 5GNR, BLE, Zigbee, LoRa, WiFi		
SNR points	-20:18 (inconsistent across modulations)	Configurable		
Sample Length	128	Configurable		

* - T. J. O'Shea, J. Corgan and T. C. Clancy, "Unsupervised representation learning of structured radio communication signals," *2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)*, Aalborg, Denmark, 2016, pp. 1-5, doi: 10.1109/SPLIM.2016.7528397.
* - deepsig.ai

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

bpsk	0.96	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.01
dsss	0.03	0.77	0.00	0.03	0.00	0.02	0.01	0.13	0.01
fsk4	0.00	0.00	0.95	0.01	0.00	0.02	0.00	0.00	0.02
fsk8	0.00	0.02	0.02	0.80	0.01	0.05	0.00	0.08	0.02
rue Label g/fsk2	0.02	0.00	0.00	0.00	0.90	0.00	0.05	0.02	0.02
r hsmg/ysn	0.04	0.00	0.00	0.07	0.02	0.67	0.04	0.05	0.12
yoo -	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
qam/psk	0.04	0.00	0.00	0.02	0.00	0.00	0.00	0.85	0.08
unknown	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	bpsk	dsss	fsk4	fsk8 Pre	g/fsk2 edicted Lab	msk/gmsk	ook	qam/psk	unknown

R Mathuria, S Rajagopal, D Bharadia, *Fourier Meets Gardner: Robust Blind Waveform Characterization.* IEEE DySPAN 2024

RFSynth: framework for dynamic spectrum data generation

- Generate labelled datasets with multiple simultaneous tx
- Create dynamic spectrum environments and transmit them in your testbed
- Foundation for digital twin and data driven development

Code github.com/ucsdwcsng/rfsynth

Questions?

Acknowledgement

https://www.iarpa.gov/research-programs/scisrs

This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via [2021-2106240007]. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright annotation therein.

